Presseartikel mit Niveau – Einfach gut!

Borsäurefreie Nickelabscheidung?

Die Herausforderung Blei, Cadmium, PFOS, Cr(VI). Mit Arsen und Hydrazin haben wir uns schon lange abgefunden. Die Liste ließe sich beliebig lange fortführen. Aber Borsäure? Echt jetzt? Der Oberflächenbeschichter, dem der (meist) sichere und (immer) souveräne Umgang mit hochgiftigen Stoffen Teil der Berufsehre war, sieht sich vollends seines vertrauten Lebensraums beraubt. Nun, Blei ist seit dem Altertum als giftig bekannt und fluorierte oder generell poly-halogenierte Kohlenwasserstoffe wollen wir auch nicht wirklich als Bestandteil unserer Biosphäre haben. Borsäure andererseits ist als Zusatzstoff von Gläsern, Pestiziden und Farbanstrichen allgegenwärtig und selbst im von Deutschland und Slowenien eingereichten Antrag, Borsäure als reproduktionstoxischen SVHC-Stoff (substance of very high concern) zu deklarieren, wird beschrieben, dass epidemiologische Studien am Menschen bislang fehlen bzw. ungenügend sind, um nachteilige Effekte auf die Fruchtbarkeit auszuschließen ("Thus, epidemiological studies in humans are insufficient to demonstrate the absence of an adverse effect on fertility"). Wenn die Autoren es nötig haben, dies in einem Satz mit dreifacher Negierung festzuhalten, so ist der Umkehrschluss mindestens genauso richtig: Es gibt bis dato keine Studie, die beweist, dass Borsäure für den Menschen reproduktionstoxisch ist. Nichtsdestotrotz, die jüngere Vergangenheit hat gezeigt, dass wenn der Gesetzgeber ein Verbot androht, dieses früher oder später in Kraft treten wird. Zudem gibt es durchaus auch Beispiele, dass Borsäure bei entsprechend hoher Exposition insbesondere bei aquatischen Organismen zu Wachstums- und Fertilitätsstörungen führt. Daher ist es gerechtfertigt, alternative Systeme zu evaluieren, was denn auch von einer Mehrzahl der Galvanolieferbetriebe getan wurde.

Da Borsäure gemeinhin in Nickelbädern als Puffersubstanz bezeichnet wird und diese Nickelbäder im Allgemeinen in einem pH-Bereich von 4 bis 4.5 betrieben werden, war es naheliegend, Borsäure durch Carbonsäuren zu ersetzen. Deren pKs-Werte (ein Maß für die Stärke der Säure) liegen meist zwischen 4 und 5 und da die Pufferkapazität eines Säure-Base-Paars im Bereich dessen pKs-Wertes am besten ist, waren Carbonsäuren die scheinbar logische Wahl, um den pH-Wert stabil zu halten. Tatsächlich zeichnen sich solche Bäder durch eine außerordentlich vorteilhafte pH-Stabilität aus, die weit ausgeprägter ist, als bei Verwendung von Borsäure. Zudem sind Nickelschichten aus diesen Bädern weitestgehend porenfrei, was ein Hinweis darauf ist, dass während der Abscheidung kein oder praktisch kein festes Nickelhydroxid gebildet wird. Damit ist eine der Hauptanforderungen, die an einen Borsäure-Ersatz gestellt werden, erfüllt. Leider weisen diese Elektrolyte aber einen ganz gewichtigen Nachteil auf: Der von Borsäurebädern bekannte Glanz und vor allem die Einebnung ist weitgehend verschwunden, sodass diese Bäder für dekorative Anwendungen leider ungeeignet sind. Den Versuchen, diesem Defizit mit höheren Glanzmittelkonzentrationen entgegenzuwirken, waren anfänglich gewisse Erfolge beschieden, scheiterten früher oder später aber im direkten Vergleich mit Borsäure-Elektrolyten.

Auf der Suche nach

Alternativen Klassische Nickelbäder bestehen aus einem Gemisch von Nickelsulfat und Nickelchlorid, Borsäure, Netzmittel, sogenannten Grundglänzern, wie zum Beispiel Natrium-Saccharin, sowie einebnenden Substanzen, die im Allgemeinen eine Alkingruppe als Funktionalität aufweisen. Nun gehört es zum kleinen Einmaleins des Koordinationschemikers, dass nicht nur Pufferkapazitäten im Bereich des pKs-Wertes am höchsten sind, sondern auch Komplexstabilitäten zwischen Komplexbildnern und Metallionen. Und hier besteht ein entscheidender Unterschied zwischen Nickel und Borsäure einerseits und Nickel und Carbonsäuren andererseits. Im Arbeitsbereich eines Nickelbades findet eine ausgeprägte Komplexbildung zwischen Nickel und Carbonsäuren statt, während dies mit Borsäure aufgrund des höheren pKs-Wertes erst bei höheren pH-Werten stattfindet. Zwar ist durchaus bekannt, dass je nach Medium, Reaktionspartner, Konzentration und Temperatur Borsäure pKs-Werte annehmen kann, die mit Carbonsäuren vergleichbar sind, allerdings begünstigen die Betriebsparameter von Nickelbädern eher höhere pKs-Werte, die die starke Komplexbildung bei pH 4 bis 4.5 zwischen Nickel und Borsäure unwahrscheinlich machen.

Es scheint daher nicht so wichtig zu sein, was Borsäure tut, sondern viel mehr, was sie eben nicht tut, nämlich Ni2+ koordinativ zu sättigen und damit für einebnende Substanzen unzugänglich zu machen. Aus Sicht des Chemikers ist diese Zugänglichkeit Voraussetzung dafür, dass die Acetylen-artigen Glanzträger als Elektronenmangel-Verbindungen ihre Elektronen-Rückbindungs-Eigenschaften im direkten Kontakt mit dem Metallzentrum entfalten können. Dies ist deshalb so wichtig, weil damit die im Zuge der Reduktion immer elektronenreicheren Metallzentren stabilisiert werden können, was mit zur Inhibition der Elektrokristallisation und der damit verbundenen Einebnung führen dürfte. Zusammengefasst muss ein Borsäure-Ersatz zwei Bedingungen erfüllen: einerseits eine möglichst geringe Neigung Nickel im Bereich des Arbeits-pH-Wertes zu binden, was im Gegenzug eine direkte Bindung zwischen Einebner und Nickel erlaubt, aber andererseits – beim und leicht unterhalb des pH-Wertes, bei welchem Nickel-Hydrolyse einsetzt – Nickel sehr stark zu binden, um so die Bildung von Nickelhydroxid zu verhindern.

Die Lösung

Die riag Oberflächentechnik AG hat eine ganze Verbindungsklasse identifiziert, welche die oben genannten Bedingungen geradezu perfekt vereint. Die daraus abgeleiteten Produkte sind nun im Begriff nach einer erfolgreich abgeschlossenen, einjährigen Testphase borsäurehaltige Verfahren schrittweise zu ersetzen. Erste Kunden beschichten nun schon seit fast einem Jahr mit Literbelastungen von weit über 1000 Ah/L mit den neuen Elektrolyten, wobei sämtliche Anforderungen, die an ein modernes, dekoratives Nickelbad gestellt werden, vollständig erfüllt beziehungsweise übertroffen werden. Besonders hervorzuheben sind folgende Merkmale:

1. Erweiterung des Arbeitsfensters: Die neue Verbindungsklasse erlaubt ein Beschichten bei höheren pH-Werten. Damit kann neu zwischen pH 3.8 bis in Extremfällen pH 5.5 beschichtet werden, ohne dass dabei Anbrennungen im hohen Stromdichtebereich beobachtet werden.

2. Verbesserung der Duktilität: Die effiziente Unterdrückung der Nickelhydroxid-Bildung verhindert weitgehend eine Versprödung der Nickelschicht.

3. Reduzierter Additiv-Verbrauch: Da der Abbau von Additiven unter anderem vom pH-Wert abhängig ist, steht es dem Beschichter offen, die Beschichtungsparameter so anzupassen, dass bei gleichbleibenden dekorativen Eigenschaften ein signifikant reduzierter Additiv-Verbrauch resultiert.

4. Verbesserte Schichtdickenverteilung: Die für den Oberflächenbeschichter wahrscheinlich interessanteste Eigenschaft ist die gleichmäßigere Schichtdickenverteilung, welche deutlich kürzere Beschichtungszeiten erlaubt.

5. Vollständige Kompatibilität der neuen Verbindungen mit Borsäure: Damit wird ein nahtloser Übergang von Borsäure zu den neuen Verfahren gewährleistet, ohne dass dabei Produktionsunterbrechungen befürchtet werden müssen.

Abschließend kann festgehalten werden, dass was anfänglich als staatlich verordnete Zwängerei wahrgenommen wurde, sich als Glücksfall für die Technik erweist. Während das Blei- und Chrom(VI)-Verbot mit erheblichen Qualitätseinbußen beim Endprodukt einhergeht, scheint bei der Borsäure-Substitution das Gegenteil der Fall zu sein. Offensichtlich hat man sich aufgrund fehlender Notwendigkeit mit Borsäure als zentralem Bestandteil von Nickelbädern abgefunden, so dass es niemandem in den Sinn kam, dass es noch etwas Besseres geben könnte. Die riag Oberflächentechnik AG versteht sich dabei als Innovationstreiber und schätzt sich glücklich, ihre Kunden auf dem Weg kontinuierlicher Prozessverbesserungen begleiten zu dürfen.

Über die Aalberts Surface Technologies GmbH

Aalberts surface technologies ist Teil des weltweit führenden und global aufgestellten Technologieunternehmens Aalberts N.V., mit seinen weltweit 135 Standorten und über 16.000 Mitarbeitern. Wir sind einer der weltweit führenden Anbieter funktioneller Oberflächenveredelungen. Darüber hinaus bieten wir unseren Kunden ein umfangreiches Sortiment an Prozesschemikalien für die Oberflächentechnik.

Wir beschichten und härten Bauteile für verschiedene Industriezweige wie die Automobilindustrie, Maschinenbau oder Medizintechnik und greifen auf ein Know-how von über 80 Jahren zurück. Wir sind spezialisiert auf Wärmebehandlungen, Oberflächenbehandlungen, Polymerbeschichtungen, Hartlöten, additive Fertigung und Nachbearbeitung.

Firmenkontakt und Herausgeber der Meldung:

Aalberts Surface Technologies GmbH
Boelckestraße 25-57
50171 Kerpen
Telefon: +49 (2237) 502-0
Telefax: +49 (2237) 502-100
http://www.aalberts-st.com

Ansprechpartner:
Jürgen Diesing
Marketing
Telefon: +49 2237 502-362
E-Mail: juergen.diesing@aalberts-st.com
Dr. André Egli
Research and Development Wängi
Telefon: +41 52 36970 70
E-Mail: andre.egli@riag.ch
Für die oben stehende Pressemitteilung ist allein der jeweils angegebene Herausgeber (siehe Firmenkontakt oben) verantwortlich. Dieser ist in der Regel auch Urheber des Pressetextes, sowie der angehängten Bild-, Ton-, Video-, Medien- und Informationsmaterialien. Die United News Network GmbH übernimmt keine Haftung für die Korrektheit oder Vollständigkeit der dargestellten Meldung. Auch bei Übertragungsfehlern oder anderen Störungen haftet sie nur im Fall von Vorsatz oder grober Fahrlässigkeit. Die Nutzung von hier archivierten Informationen zur Eigeninformation und redaktionellen Weiterverarbeitung ist in der Regel kostenfrei. Bitte klären Sie vor einer Weiterverwendung urheberrechtliche Fragen mit dem angegebenen Herausgeber. Eine systematische Speicherung dieser Daten sowie die Verwendung auch von Teilen dieses Datenbankwerks sind nur mit schriftlicher Genehmigung durch die United News Network GmbH gestattet.

counterpixel